Quantitative Analysis of Calcium Spikes in Noisy Fluorescent Background

نویسندگان

  • Radoslav Janicek
  • Matej Hotka
  • Alexandra Zahradníková
  • Ivan Zahradník
چکیده

Intracellular calcium signals are studied by laser-scanning confocal fluorescence microscopy. The required spatio-temporal resolution makes description of calcium signals difficult because of the low signal-to-noise ratio. We designed a new procedure of calcium spike analysis based on their fitting with a model. The accuracy and precision of calcium spike description were tested on synthetic datasets generated either with randomly varied spike parameters and Gaussian noise of constant amplitude, or with constant spike parameters and Gaussian noise of various amplitudes. Statistical analysis was used to evaluate the performance of spike fitting algorithms. The procedure was optimized for reliable estimation of calcium spike parameters and for dismissal of false events. A new algorithm was introduced that corrects the acquisition time of pixels in line-scan images that is in error due to sequential acquisition of individual pixels along the space coordinate. New software was developed in Matlab and provided for general use. It allows interactive dissection of temporal profiles of calcium spikes from x-t images, their fitting with predefined function(s) and acceptance of results on statistical grounds, thus allowing efficient analysis and reliable description of calcium signaling in cardiac myocytes down to the in situ function of ryanodine receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovering Spikes from Noisy Neuronal Calcium Signals via Structured Sparse Approximation

Two-photon calcium imaging is an emerging experimental technique that enables the study of information processing within neural circuits in vivo. While the spatial resolution of this technique permits the calcium activity of individual cells within the field of view to be monitored, inferring the precise times at which a neuron emits a spike is challenging because spikes are hidden within noisy...

متن کامل

The modulatory effects of orexin B on the calcium channels activity in neuronal cells of Helix aspersa (garden snail)

Introduction: The functional effects of orexin-B on the calcium spikes and excitability of the neuronal soma membrane of garden snail, Helix aspersa were studied. Methods: Conventional intracellular recording, under the current clamp conditions was performed to examine the effects of orexin-B on the configuration and electrophysiological properties of calcium spikes. Results: Application o...

متن کامل

Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation

The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic ...

متن کامل

Modification of Nifedipine Inhibitory Effect on Calcium Spike and L-Type Calcium Current by Ethanol in F1 Neuron of Helix aspersa

There is strong evidence demonstrating that nifedipine dissolved in ethanol selectively inhibits only L-type Ca2+ current. In addition, acute ethanol exposure reduces voltage-dependent calcium currents. In the present study, we investigated the antagonistic effect of fixed concentration of nifedipine dissolved in different concentration of ethanol on L-type Ca2+ current. In a Na+-K+ free soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013